





# Recent developments in the MPD experiment at NICA complex

Alexey Aparin for the MPD collaboration Joint Institute for Nuclear Research, Dubna

# **Theory of QGP**





The energy scan covers the transition region from baryon to meson dominance in the chemical freeze-out regime. At the same time, this is the challenging domain of the transition from baryon stopping to nuclear transparency, where new experimental data would be very useful to progress in the theoretical understanding.



There is a minimum in the freeze-out volume related to the "softest point" in the EoS in the NICA energy window which is accessible to verification by femtoscopy measurements.

### High baryon area





- ✓ Study of the QCD medium at extreme net baryon densities, phase transition at  $\rho_c \sim 5\rho_0$
- ✓ Studied in several ongoing and future experiments:
- ✓ collider experiments: maximum phase space, minimally biased acceptance, free of target parasitic effects
- ✓ fixed-target experiments: high rate of interactions, easily upgradeable, better vertex-finder for heavy flavor decays



#### **NICA complex**





| Ring circumference, m                        | 503,04             |
|----------------------------------------------|--------------------|
| Number of bunches                            | 22                 |
| r.m.s. bunch length, m                       | 0,6                |
| β, m                                         | 0,35               |
| Energy in c.m., Gev/u                        | 4-11               |
| r.m.s. ⊿p/p, 10 <sup>-3</sup>                | 1,6                |
| IBS growth time, s                           | 1800               |
| Luminosity, cm <sup>-2</sup> s <sup>-1</sup> | 1x10 <sup>27</sup> |



First runs in collider will be in

 $\checkmark$  without electron cooling in collider, with stochastic cooling, reduced number of RFs  $\rightarrow$  not-optimal beam optics

✓ reduced luminosity (~10<sup>25</sup> is the goal for 2023) → collision rate ~ 50 Hz

✓ collision system available with the current sources: C (A=12), N (A=14), Ar (A=40), Fe (A=56), Kr (A=78-86),

Xe (A=124-134), Bi (A=209)  $\rightarrow$  start with Bi+Bi 9.2 GeV in 2023, Au+Au 4-11 GeV to continue

Scientific seminar, AANL, Yerevan, 21.02.2023

## **Multi-Purpose Detector (MPD) Collaboration**

**MPD** International Collaboration was established in **2018** to construct, commission and operate the detector

10 Countries, >450 participants, 31 Institutes and JINR

#### **Organization**

Acting Spokesperson: Deputy Spokesperson: Institutional Board Chair: Project Manager: Victor Riabov Zebo Tang Alejandro Ayala Slava Golovatyuk

Joint Institute for Nuclear Research; AANL, Yerevan, Armenia; University of Plovdiv, Bulgaria; Tsinghua University, Beijing, China; USTC, Hefei, China; Huzhou University, Huizhou, China; Institute of Nuclear and Applied Physics, CAS, Shanghai, China; Central China Normal University, China; Shandong University, Shandong, China; IHEP, Beijing, China; University of South China, China; Three Gorges University, China; Institute of Modern Physics of CAS, Lanzhou, China; Tbilisi State University, Tbilisi, Georgia; FCFM-BUAP (Heber Zepeda) Puebla, Mexico; FC-UCOL (Maria Elena Tejeda), Colima, Mexico; FCFM-UAS (Isabel Dominguez), Culiacán, Mexico; ICN-UNAM (Alejandro Ayala), Mexico City, Mexico; Institute of Applied Physics, Chisinev, Moldova; Institute of Physics and Technology, Mongolia;





Belgorod National Research University, **Russia**; INR RAS, Moscow, **Russia**; MEPhI, Moscow, **Russia**; Moscow Institute of Science and Technology, **Russia**; North Osetian State University, **Russia**; NRC Kurchatov Institute, ITEP, **Russia**; Kurchatov Institute, Moscow, **Russia**; St. Petersburg State University, **Russia**; SINP, Moscow, **Russia**; Vinča Institute of Nuclear Sciences, **Sarbia**;

Pavol Jozef Šafárik University, Košice, Slovakia

# MPD position in the physics landscape

|                                                                          | NA61/SHINE<br>at SPS                       | CBM<br>at FAIR                   | STAR BES+FXT<br>at RHIC                   | MPD + BM@N<br>at NICA                       |
|--------------------------------------------------------------------------|--------------------------------------------|----------------------------------|-------------------------------------------|---------------------------------------------|
| Coverage of region of transition from baryon to meson dominance ("horn") | only higher Vs <sub>NN</sub>               | only lower Vs <sub>NN</sub>      | Yes (mixing collider<br>and fixed target) | Yes (consistent<br>acceptance)              |
| expected luminosity (w.r.t. MPD)                                         | lower                                      | higher                           | lower                                     | reference                                   |
| possibility for system size scan                                         | yes                                        | yes                              | yes (?)                                   | yes                                         |
| full centrality range                                                    | no                                         | yes (?)                          | yes                                       | yes                                         |
| acceptance type                                                          | Fixed target                               | Fixed target                     | Collider + fixed target                   | Collider + fixed target                     |
| running plan (heavy-ions)                                                | approved for 2021<br>(per-year decision)   | beyond 2025                      | running concluded in<br>2021              | 2023 and beyond                             |
| status at the facility<br>(possible running time)                        | in competition with<br>many projects (LHC) | CBM one of four main experiments | end of datataking<br>(heavy-ion) in 2021  | flagship experiments<br>several months/year |

- ✓ The MPD strategy consists of performing a high-luminosity scan in energy and system size, looking for a wide variety of signals sensitive to the phase transition and presence of the critical point
- ✓ The scans are going to be performed using the same apparatus with all the advantages of collider experiments

Eur.Phys.J. A 58 (2022) 7, 140







Schematic 3D-view of the MPD (Multipurpose Detector) subsystems in the first stage of operation at NICA. The yoke of the magnet, the Electromagnetic, the Forward Hadronic Calorimeters, the Fast Forward Detector and Time Projection Chamber are indicated.

From V. Abgaryan et al. [The MPD Collaboration], Status and initial physics performance studies of the MPD experiment at NICA



🖄 Springer

6

#### **Multi-Purpose Detector**





**TPC**:  $|\Delta \phi| < 2\pi, |\eta| \le 1.6$ **TOF, EMC**:  $|\Delta \phi| < 2\pi, |\eta| \le 1.4$ **FFD**:  $|\Delta \phi| < 2\pi$ , 2.9 <  $|\eta| < 3.3$ **FHCAL**:  $|\Delta \phi| < 2\pi, 2 < |\eta| < 5$ 



Au+Au @ 11 GeV (UrQMD + full chain reconstruction)









TOF

## **MPD** subsystems in production

#### SC Solenoid + Iron Yoke



Goal is to cool down and power the magnet + magnetic field measurements will start soon

#### **Support structure**





94 (60)% of MRPCs (modules) are ready, mass production and cosmic tests ongoing

 $ECAL \sim 100 t$ 

See <u>http://mpd.jinr.ru/doc/mpd-tdr/</u> for details

#### **TPC – central tracking detector**

ROCs done Cyllinders done Electronics in mass production

**38 400** towers 16/25 sectors will be produced for Stage-I,

remaining modules is

production of the

possible by 2024



(NICA)



#### ECAL (projective geometry)



→ SPM

Scientific seminar, AANL, Yerevan, 21.02.2023

### **MPD** assembly







- $\checkmark$  MPD hall is available for detector activities
- ✓ Installation of the MPD superconducting coil inside the magnet yoke 29 July, 2021, followed by alignment of cold mass, pressure test of thermal shield and cryostat cold mass, replacement of flanges, vacuum test of solenoid vessel, leak test of cryostat
- Ongoing: temperature probes cables, assembling magnet yoke, alignment, installation of top platform, chimney installation, cryogenic system with control systems, magnetic field measurement



# **Cryogenic system assembly**



- ✓ Barrel Magnet Yoke is completely assembled
- Cryogenic platform has been mounted, next step is mounting of the refrigerator, vacuum pumps, control electronics, etc.
- Assembling the refrigerator for installation on the platform
- ✓ Works on the magnet control system, cryogenics and power supplies
- ✓ Magnetic field mapper and magnetic field measurements





P

NICA

# MPD trigger system





- MPD challenges at NICA energies:
  - ✓ low multiplicity of particles produced in heavy-ion collisions
  - ✓ particles are not ultra-relativistic (even the spectator protons)
- Forward detectors are in advanced state of production (electronics and integration)



- FFD (Fast Forward Detector):
- ✓ fast event triggering
- $\checkmark$  T<sub>0</sub> for time measurements in the TOF and ECAL



 FHCAL (Forward Hadron Calorimeter) – detector for event centrality and reaction plane measurements with potential for event triggering

## **Centrality determination**





TPC and ECAL produce similar results for centrality

FHCAL centrality has a very wide correlation with the TPC/ECAL centrality; resolution by impact parameter is worse



#### **Forward calorimeter**









Comparison of MC results with data from NA61 FHCAL on the spectator energy Experimental data for hadronic calorimeter (PSD) in Pb-Pb at 30 GeV/n, fixed-target.

The DCM-SMM reproduces the measurement results, PHQMD not

### **Identified hadron spectra**



- > Particle spectra, yields and ratios probe bulk properties of the firerball and flow
- Advantage of the MPD is in large and uniform acceptance, excellent PID capabilities using combined analysis of TPC (dE/dx) and TOF signals

0-5% central AuAu@9 GeV (PHSD, with partonic phase and chiral symmetry restoration effects):



- ✓ MPD samples ~ 70% of the  $\pi/K/p$  production in the full phase space
- $\checkmark$  hadron spectra are measured from 0.2 MeV/c to 2.5 GeV/c in transverse momentum with the TPC&TOF
- ✓ unmeasured hadron yields at low  $p_T$  and large values of rapidity can be extracted from extrapolation of the measured spectra (B-W for  $p_T$  spectra and Gaussian for rapidity spectra in exampled above)

Ability to cover full energy range of the "horn" with consistent acceptance across different collision systems and collision energies Scientific seminar, AANL, Yerevan, 21.02.2023 Phys.Part.Nucl. 53 (2022) 2, 203-206

#### **Machine learning in PID**





Development of methods for identification of charged tracks using the TPC and TOF

Purpose: higher efficiency and purity of the signals

Options: different field configurations, systems and energies, methods, including machine learning approaches (Decision Tree Approach)

# Weak decays of strange baryons



 $\Omega$  -

7 · 10<sup>4</sup>

8.0 · 10<sup>4</sup>

1.5 · 10<sup>6</sup>

anti– $\Omega^+$ 

1.5 · 10<sup>4</sup>

- Strangeness production probes the EoS, phase boundaries and onset of deconfinement
- Antibaryon-to-baryon ratios at intermediate momenta are sensitive to CEP (a falling trend in contrast to a constant behavior in the scenario without CEP)  $\Lambda = \frac{1}{\Lambda} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$

3.108

3.5 · 10<sup>6</sup>

➤ AuAu@11 GeV (PHSD):



- ✓ Strange baryons can be reconstructed with good S/B ratios using charged hadron identification in the TPC&TOF and different decay topology selections
- ✓ Relative yields of the baryons for ~ 500 M sampled events: Scientific seminar, AANL, Yerevan, 21.02.2023

Acta Physica Polonica B 14 (2021) 3, 529-532

## **Short-lived resonances**



Resonances probe reaction dynamics and particle production mechanisms vs. system size and √s<sub>NN</sub> ✓ hadron chemistry and strangeness production, lifetime and properties of the hadronic phase, spin alignment of vector mesons, flow etc.

|                      | ρ(770)                     | K*(892)                  | Σ(1385)                    | Λ(1520)             | <b>Ξ(1530)</b>             | <b>(1020)</b>       |
|----------------------|----------------------------|--------------------------|----------------------------|---------------------|----------------------------|---------------------|
| <b>c</b> τ (fm/c)    | 1.3                        | 4.2                      | 5.5                        | 12.7                | 21.7                       | 46.2                |
| σ <sub>rescatt</sub> | $\sigma_{\pi}\sigma_{\pi}$ | $\sigma_{\pi}\sigma_{K}$ | $\sigma_\pi\sigma_\Lambda$ | $\sigma_K \sigma_p$ | $\sigma_{\pi}\sigma_{\Xi}$ | $\sigma_K \sigma_K$ |

BiBi@9.2 GeV (UrQMD) after mixed-event background subtraction:





✓ MPD is capable of reconstruction the resonance peaks in the invariant mass distributions using combined charged hadron identification in the TPC and TOF

✓ decays with weakly decaying daughters require additional second vertex and topology cuts for reconstruction



Phys.Scripta 96 (2021) 6, 064002

## **Reconstruction of hypertritons**



Information on YN interactions, strange sector of nuclear EoS, astrophysics BiBi@9.2 GeV (PHQMD), 40 M sampled events:



Phys. Lett. B697 (2011) 203

-⇔<sup>-3</sup>He,<sup>3</sup>He

-⊞-4He,4He

10<sup>2</sup>

-**∓**-3H

10<sup>3</sup>

Mass = 3.9257

Sigma = 0.0022

 $S/\sqrt{S+B} = 14.5$ 

Eff. = 0.7%

S/B = 1.9

 $\sqrt{s_{_{\rm NN}}}$  (GeV)

4.05

 $M_{inv}$ , GeV/c<sup>2</sup>

-**-**\_\_\_5H

--\_\_6He

\_\_\_\_<sup>7</sup>He

Thermal model predicts an enhanced hypernuclear production in the NICA energy range

MC data sample was enriched with additional hypernuclei

3.95

## $v_2$ for pions and protons



Flow has high sensitivity to the transport properties of the QCD matter: EoS, speed of sound ( $c_s$ ), specific viscosity ( $\eta/s$ ), etc. Lack of existing differential measurements of  $v_n$  vs.  $p_T$ , centrality, species, etc.) 15 M of reconstructed UrQMD events for AuAu@7.7 GeV



Reconstructed and generated  $v_2$  of pions and protons are in good agreement for all methods

# Collective flow for V0 ( $K_s^0$ and $\Lambda$ )

#### 25 M AuAu@11 GeV (UrQMD)

Differential flow signal extraction using invariant mass fit method

Reasonable agreement between reconstructed and generated  $v_n$  signals for  $K_s^0$  and  $\Lambda$ 



 $v_1/v_2$  flow after fit Measured flow for (S+BG) Measured flow for true pairs Flow from event generator

NICA

 $v_{2}^{SB}(\mathbf{m}_{inv},\mathbf{p}_{T}) = v_{2}^{S}(\mathbf{p}_{T}) \frac{\mathbf{N}^{S}(\mathbf{m}_{inv},\mathbf{p}_{T})}{\mathbf{N}^{SB}(\mathbf{m}_{inv},\mathbf{p}_{T})} + v_{2}^{B}(\mathbf{m}_{inv},\mathbf{p}_{T}) \frac{\mathbf{N}^{S}(\mathbf{m}_{inv},\mathbf{p}_{T})}{\mathbf{N}^{SB}(\mathbf{m}_{inv},\mathbf{p}_{T})}$ 

#### **Neutral mesons**

- \* Extend  $p_T$  range of charged particle measurements, various species ( $\eta$ ,  $\omega$ ,  $\eta$ ', etc.)
- AuAu@11 GeV (UrQMD): realistic ECAL reconstruction and analysis in high multiplicity environment + photon conversion method



\*  $\pi^0$  and η MC closure tests: reconstructed spectra match the generated ones





#### **Photon measurements**



#### AuAu@11 GeV (UrQMD)

- ✓ EMCAL: large acceptance but modest resolution and small S/B at low momentum
- ✓ Conversion method: low efficiency (~ 1.5%) but high purity (> 95%) and good energy resolution



Scientific seminar, AANL, Yerevan, 21.02.2023

#### **HIC landscape**





# **SUMMARY**



- ✓ MPD collaboration is steadily coming to final integration of the detector and first data taking on the beams from NICA
- ✓ Physics program for the first years of MPD data taking is formulated and the first physics paper was recently published
- ✓ MPD will provide unique opportunity for investigating properties of nuclear matter at maximal densities to search for phase transition and the Critical Point
- ✓ First operations of the MPD detector are expected at the end of 2023 with cosmic studies
- ✓ First BiBi beam at the NICA complex is expected at 2024



# Backup slides

## **Centrality studies by TPC**



AuAu@7.7 GeV (UrQMD), reconstructed data

MC Glauber (MC-Gl) and Bayesian inversion method ( $\Gamma$ -fit) methods for extraction of b



- $\blacktriangleright$  Comparable results with PHSD and SMASH event generators at different energies  $\rightarrow$  robust method
- $\succ$  Centrality estimation consistent with STAR  $\rightarrow$  good for cross-checks between the experiments
- > Centrality measurements are possible in a wide |z-vertex| < 120 cm range

[1] Centrality Determination in Heavy-ion Collisions with MPD Detector at NICA, Acta Physica Polonica B 14 (2021) 3, 503-506
[2] Relating Charged Particle Multiplicity to Impact Parameter in Heavy-Ion Collisions at NICA Energies, Particles 4 (2021) 2, 275-287

# **Centrality and reaction plane by FHCAL**



> FHCAL is a hadronic calorimeter, ~ 1 m<sup>2</sup>, 45 segments 15x15 cm<sup>2</sup>, 2 <  $|\eta| < 5$ 

